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Background

Degradation: examples

Degradation: changes of key performance characteristic over time

Performance characteristic: capacity, light intensity, wear level, crack

.....
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Background

Degradation: more examples

Performance characteristic: gear vibration, measurement accuracy, printhead ink
migration, corrosion

.....
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Background

Degradation and failure time
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Degradation and failure time
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Background

Remaining useful life (RUL)
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Background

RUL demo
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Background

RUL demo
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RUL demo
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Background

RUL demo
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Background

Degradation: applications
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Background

Degradation: more applications

0 2 4 6 8
0

5

10

15

20

25

time

d
e

g
ra

d
a

ti
o

n
 l
e

v
e

l

preventive maintenance limit

failure threshold

Preventive maintenance

0 2 4 6 8 10
time

d
e
g
ra

d
a
ti
o
n
 l
e
v
e
l

detection limit

Predict warranty costs

0 2 4 6 8 10 12

0

2

4

6

8

10

12

14

16

18

20

22

time

d
e

g
ra

d
a

ti
o

n
 l
e

v
e

l

burn−in time

cut−off level

failure threshold

Burn-in test

12 / 45



Background

Degradation modelling: a stochastic process

The degradation level stochastically increases over time.

Degradation of different units differs.

0 2 4 6 8 10
0

5

10

15

20

25

time

d
e

g
ra

d
a
ti
o

n
 l
e

v
e

l

failure time

failure threshold

degradation path

0 2 4 6 8 10
0

5

10

15

20

25

time

d
e

g
ra

d
a

ti
o

n
 l
e

v
e
l

13 / 45



Background

Monotonic degradation data – examples
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Existing stochastic processes: the gamma process and the inverse Gaussian (IG)
process

Physical interpretation: limiting compound Poisson process

14 / 45



Background

The Inverse Gaussian (IG) process

A stationary IG process {Y(t), t ≥ 0} is a stochastic process which satisfies the following
properties: i) Y(0) = 0 with probability 1; ii) {Y(t), t ≥ 0} has independent increments;
iii) The increment ∆Yts = Y(t)− Y(s) follows the IG distribution IG(∆t/α, β∆t2) with
∆t = t − s > 0. The probability density function (PDF) of an IG distribution
IG(a, b), a > 0, b > 0 is

fIG(u; a, b) =

(
b

2πu3

)1/2

exp

[
−b(u − a)2

2a2u

]
, u > 0.

Non-stationary IG process: introduce the time-scale transformation Λλ(t) to the
stationary IG process, which is a monotone increasing function of t, and λ is the unknown
parameter to be estimated.

Most existing research is on modelling and offline estimation based on the IG
process, very few on online inference and RUL prediction
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IG process online Inference

Problem setting

Consider n systems and the degradation of each system follows a nonstationary IG process.

Let 0 = t0 < t1 < t2 < · · · < tm < · · · be the inspection time points, where the
degradation levels of all the systems are measured. Let yi ,j be the degradation level of the

ith system at time tj and Y
(i)
0:m = (yi ,0, . . . , yi ,m) be the collected degradation

observations for the ith system up to the time point tm.

The degradation data from all the systems up to tm are denoted as

Y0:m = (Y
(1)
0:m, . . . ,Y

(n)
0:m).
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IG process online Inference

Two objectives

...1 Assume the current time point is tm. The first task is to estimate θ = (α, β, λ) based on
Y0:m. The RUL of the system at time tm is then defined as
Xm = inf{x : Y(x + tm) ≥ ω|ym < ω}, where ω is the failure threshold.

...2 At the next inspection time point tm+1, the new observations (y1,m+1, . . . , yn,m+1) from
the n systems become available. Our next objective is to efficiently obtain θ̂(m+1) by
using the new observations, the previous estimates θ̂(m) and possibly only a few summary
statistics based on the historical data Y0:m. Afterwards, the in-situ RUL prediction can
also be performed.
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IG process online Inference

The idea - a composite framework

If λ is known, the updates of α̂ and β̂ can be derived from their MLEs based on Y0:m

α̂(m) =
nΛλ(tm)∑n
i=1 yi ,m

, β̂(m) =
nm∑n

i=1

∑m
j=1

∆Λ2
j

∆yi,j
− n2Λ2

λ(tm)∑n
i=1 yi,m

.

When the new degradation measurements ym+1 = (y1,m+1, . . . , yn,m+1) are collected, the
update of α̂(m+1) is straightforward

α̂(m+1) =
nΛλ(tm+1)∑n
i=1 yi ,m+1

which does not need any information from Y0:m. In terms of β̂(m+1), by decomposing the
denominator, we have the recursive formula

β̂(m+1) =
n(m + 1)

nm
β̂(m)

+
[
α̂(m)

]2∑n
i=1 yi ,m −

[
α̂(m+1)

]2∑n
i=1 yi ,m+1 +

∑n
i=1

∆Λ2
m+1

∆yi,m+1

.
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IG process online Inference

The idea - a composite framework

Composite procedure: λ̂(m) → (α̂(m), β̂(m)) → λ̂(m+1) → (α̂(m+1), β̂(m+1)) → ...

How to update λ̂(m+1) based on (α̂(m), β̂(m))?

The profile likelihood does not permit an efficient recursion

Is there any theoretical guarantee on the composite procedures?

Convergence and asymptotic normality may not be easy to establish
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IG process online Inference

Update λ̂

One-step estimator: given a preliminary estimator θ̃, the one-step estimator θ̂ is

θ̂ = θ̃ + [I (θ̃)]−1L̇(θ̃),

where I (·) is the Fisher information and L̇(·) is the score function.

If θ̃ is
√
n-consistent and the function θ 7→ L̇(θ) satisfies certain differentiability

conditions, the one-step estimator θ̂ is
√
n-consistent and asymptotically efficient.

The one-step estimator λ̂(m+1) can be derived as

λ̂(m+1) = λ̂(m) + Vm+1(λ̂
(m))

1

n
L̇(α, β, λ̂(m)|Y0:m+1),

where Vm+1(λ) is the inverse of Fisher information contributed by Y0:m+1, and L(·) is the
likelihood function.
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IG process online Inference

However, Vm+1(λ̂
(m)) cannot be efficiently updated from Vm(λ̂

(m−1)) as Ij ’s have to be

recalculated for different estimators of λ. Recall that the estimates α̂(m) and β̂(m) will be
used in λ̂(m). Therefore, an approximation to Vm+1(λ̂

(m)) at each step can be

Ṽm+1 =
[∑m+1

j=1 Ij(λ
(j−1)|α̂(j−1), β̂(j−1))

]−1
and it is easy to see that Ṽm is recursive

because
Ṽ−1
m+1 = Ṽ−1

m + Im+1(λ̂
(m)|α̂(m), β̂(m)).

The recursion for λ can be approximated as

λ̂(m+1) = λ̂(m) +
1

n
Ṽm+1L̇(α, β, λ̂

(m)
n |Y0:m+1),
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IG process online Inference

The algorithm

...1 After collecting the degradation values measured at least three times, the offline
estimation procedure is implemented to obtain the initial estimates of the parameters,

denoted as α̂(3), β̂(3) and λ̂(3). Compute Ṽ3 =
[∑3

j=1 Ij(λ
(3)|α̂(3), β̂(3))

]−1
.

...2 After the mth iteration, m ≥ 3, when new observations ym+1 is collected, the estimates

of α and β are updated by λ̂(m). Denote the updated estimates as α̂(m+1) and β̂(m+1),
respectively.

...3 Update Ṽm+1. Then substitute α̂(m+1) and β̂(m+1) to obtain λ̂(m+1).

...4 Repeat Steps 3 and 4 until no new observations are collected.
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IG process online Inference

Asymptotic results

.
Theorem
..

......

For every m ≥ 3, we have that (α̂(m), β(m), λ̂(m)) converges to (α0, β0, λ0) in probability when
n → ∞. Furthermore, the estimator sequence

√
n{(α̂(m), β(m), λ̂(m))− (α0, β0, λ0)} converges

in distribution to a 3-dimensional normal random vector with mean zero and covariance matrix
Σm, where Σm can be recursively updated.
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IG process online Inference

RUL prediction

Recall the RUL at tm is defined as Xm = inf{x : Y(x + tm) ≥ ω|ym < ω}.
The CDF of Xm can be readily derived by the equivalence of the two events {Xm < x}
and {Y(x + tm) ≥ ω}

FXm (x |ym) = P{Y(x + tm) ≥ ω} = P{Y(x + tm)− ym ≥ ω − ym}

= Φ

(√
β [∆Λx − α(ω − ym)]√

ω − ym

)
− exp (2αβ∆Λx) Φ

(
−
√
β [∆Λx + α(ω − ym)]√

ω − ym

)
.

The estimates (α̂(m), β̂(m), λ̂(m)) can then be used to sequentially update the CDF FXm(·).
Other reliability characteristics can also be obtained.
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IG random effects model

IG random effects model

The degradation data from different systems can exhibit heterogeneities because of
variability of raw materials, fluctuations in the production processes and different
operating environments.

To account for the heterogeneities, the random-effect model has been extensively used in
degradation modelling by letting one of the model parameters vary across different
systems.

We let the drift parameter α be a normal random variable, i.e., α ∼ N(µ, σ2), by
assuming that µ ≫ σ so that the possibility of a negative α is neglectable.

The unknown parameters are now θ = (β, µ, σ, λ).
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IG random effects model

Update β, µ, σ given λ

Major difficulty: in presence of random effects, the MLEs of β, µ, σ do not have closed
forms, which pose difficulties in developing recursions

Idea: estimate the missing parameters α1, . . . , αn and then use them to estimate µ and σ.

Given λ and observed degradation increments ∆y1, . . . , ∆ym, the ML estimators of β
and αi ’s are respectively

β̂(m) =
nm∑n

i=1 ϕi ,m
, α̂

(m)
i =

Λλ(tm)

yi ,m
, i = 1, . . . , n,

where ϕi ,m =
∑m

j=1

∆Λ2
j

∆yi,j
− Λ2

λ(tm)
yi,m

.

Bias correction: because of the excess parameters and the reduced sample size of a single
system, these estimators can be highly biased.
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IG random effects model

Bias correction and recursion of β̂

Observe that a unbiased estimator for 1/β is Tm =
∑n

i=1 ϕim/[n(m − 1)]

Taylor’s expansion gives E [1/Tm] ≈ β + Var(Tm)β
3

An approximate estimator of the variance is

̂Var(Tm) =
1

n−1

∑n
i=1(ϕim − ϕ̄m)

2

n(m − 1)2
.

The closed-form estimator of β with bias correction can be derived as

β̃(m) =
n(m − 1)∑n

i=1 ϕim
−

∑n
i=1(ϕim − ϕ̄m)

2

n(n − 1)(m − 1)2

(
nm∑n

i=1 ϕi ,m

)3

.

It can be shown ϕi ,m is recursive

ϕi ,m+1 =
m+1∑
j=1

∆Λ2
j

∆yi ,j
−

Λ2
λ(tm+1)

yi ,m+1
= ϕi ,m +

yi ,m+1∆yi ,m+1

yi ,m

[
Λλ(tm+1)

yi ,m+1
− ∆Λm+1

∆yi ,m+1

]2
.
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IG random effects model

Bias correction and recursion of α̂i , µ̂ and σ̂

Note that

E
[
α̂
(m)
i

]
= E

[
E
[
α̂
(m)
i |αi

]]
= E

[
αi +

1

βΛλ(tm)

]
= µ+

1

βΛλ(tm)

which implies the bias is 1/(βΛλ(tm)).
A closed-form estimator of α with bias correction is

α̃
(m)
i = α̂

(m)
i − 1

β̃(m)Λλ(tm)
=

Λλ(tm)

yi ,m
− 1

β̃(m)Λλ(tm)
, i = 1, . . . , n.

Afterwards,

µ̃(m) =
1

n

n∑
i=1

α̃
(m)
i .

σ̃(m) =

√√√√ 1

n − 1

n∑
i=1

(
α̃
(m)
i − µ̃(m)

)2
− 2

[β̃(m)]2 [Λλ(tm)]
4
− µ̃(m)

β̃(m) [Λλ(tm)]
3
.
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IG random effects model

Update λ given β, µ, σ

One-step estimator

λ̃(m+1) = λ̃(m) +
1

n
R̃Vm+1RSm+1(∆ym+1, λ̃

(m)),

where R̃Vm+1 =
[∑m+1

j=1 RIj(λ̃
(j−1)|α̃(j−1), β̃(j−1))

]−1
is the approximation of the inverse

of the Fisher information and RSj(∆yj , λ) is the derivative of the log-likelihood based on
the jth degradation increments with respect to λ.

It is easy to verify that R̃Vm can be sequentially updated as

R̃V
−1

m+1 = R̃V
−1

m + RIm+1(λ̃
(m)|α̃(m), β̃(m))

and RSm+1(∆ym+1, λ̃
(m)) only depends on ∆ym+1.
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IG random effects model

The algorithm

...1 Use the the first three degradation measurements to implement the offline estimation.

Obtain
(
β̃(3), α̃

(3)
1 , . . . , α̃

(3)
n , λ̃(3)

)
and then obtain µ̃(3) and σ̃(3) using the pseudo sample

α̃(3). Compute R̃V 3 =
[∑3

j=1 RIj(λ̃
(3)|α̃(3), β̃(3))

]−1
.

...2 After the mth iteration, m ≥ 3, when new observations ym+1 is collected, first update

ϕi ,m+1. Then β̃(m+1), α̃(m+1), µ̃(m+1) and σ̃(m+1) can be iteratively updated by λ(m).

...3 Update R̃Vm+1. Then substitute β̃(m+1) and α̃(m+1) to obtain λ(m+1).

...4 Repeat Steps 3 and 4 until no new observations are collected.
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IG random effects model

RUL prediction

.
Theorem
..

......

Assume that the observed degradation measurements are 0 < y1 < · · · < ym < ω at current
time tm which follows an IG random-effect process with α ∼ N(µ, σ2). The CDF of the RUL
Xm is

FXm(x |ym) = Φ

−K1µm + K2√
1 + K 2

1 τm

− exp

(
K3µm +

K 2
3 τm
2

)
Φ

−K1µm − K2 − K1K3τm√
1 + K 2

1 τm

 ,

where Φ(·) is the CDF of the standard normal distribution, µm =
βΛλ(tm) + µσ−2

βym + σ−2
,

τm =
(
βym + σ−2

)−1
, K1 =

√
β(ω − ym), K2 =

√
β∆Λx√
(ω−ym)

and K3 = 2β∆Λx .
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Simulation

Setting

α = 3, β = 10 and a power transformation Λλ(t) = t2 with λ = 2.

n = 15 and m = 100.

Random effects: α ∼ N
(
3, 0.82

)
, i.e., µ = 3 and σ = 0.8.
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Simulation

No random effects
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Simulation

Random effects
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Simulation

Random effects
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Example

Lithium-ion battery capacity degradation
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Example

Online estimation - no random effects
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Example

Online estimation - random effects
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Example

No random effects vs Random effects
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Figure: The AIC values and p-values for IG models with and without random effects.
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Example

Test α ∼ N(µ, σ)
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Example

RUL prediction
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Figure: RUL prediction of Lithium battery #6 based on the two IG models.
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Conclusion

Conclusion

The IG process is one of the most important degradation processes in degradation
modelling.

Online estimation and RUL prediction based on the IG process have not been well studied
in the literature.

We have proposed for the first time the efficient online estimation methods considering
the IG process with and without random effects.

Compared with the filtering methods commonly used for the Weiner process, our methods
are computationally efficient and do not have the impoverishment problems.

It is possible to be extended to the gamma process.
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Thank You!

Q&A
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