Remaining Useful Life Prediction for Gamma Degradation Processes: A Recursive Bayesian Approach

徐安察

浙江工商大学统计与数学学院

Email: xuancha@mail.zjgsu.edu.cn

合作者: 汪懿君, 汤银才

Conjugate Prior and Posterior Sampling

Simulation

Online RUL Prediction

Simulation

5 Online RUL Prediction

Case study

Time

徐安察 (ZJSU)

Time

徐安察 (ZJSU)

Degradation Models

- General path model.
- Stochastic process: Wiener, gamma, inverse Gaussian (IG), variance gamma, Ornstein–Uhlenbeck, etc.
- Review papers: Si et al. (2011), Ye and Xie (2015), Zhang et al. (2018).

Remaining useful life (RUL)

Time

徐安察 (ZJSU

Literature review

- For Wiener-based degradation models, the Kalman filter or its extended methods are often utilized to conduct online RUL predictions (Wang et al, 2011; Si et al., 2013; Wang and Tsui, 2018; Zhang et al., 2018).
- For gamma process, Paroissin (2017) and Xu and Shen (2018) developed recursive linear estimators for the mean and variance of the gamma process.
 - Using the same techniques for RUL prediction and interval estimation remains challenging.
 - As new observations emerge, conducting statistical analysis mandates a reiteration for the updated dataset, posing challenges with growing sample sizes in terms of data storage and computational efficiency.

Conjugate Prior and Posterior Sampling

Simulation

Case study

Gamma process

Definition

Gamma process $\{\mathcal{Y}(t), t \geq 0\}$ satisfies the following properties:

- i) $\mathcal{Y}(0) = 0$ with probability 1;
- ii) $\{\mathcal{Y}(t), t \geq 0\}$ has independent increments;
- iii) The increment $\Delta Y_t = \mathcal{Y}(t) \mathcal{Y}(s)$ follows gamma distribution ($Ga(\alpha(t-s),\beta)$) with probability density function (PDF)

$$f(y|\alpha,\beta) = \frac{\beta^{\alpha(t-s)}y^{\alpha(t-s)-1}}{\Gamma(\alpha(t-s))} \exp\left\{-\beta y\right\}, t > s,$$

where $\Gamma(\cdot)$ denotes the gamma function.

We denote the gamma process $\{\mathcal{Y}(t), t \geq 0\}$ as $\mathcal{GP}(\alpha t, \beta)$.

Lifetime

- \bullet Let ${\mathcal C}$ denote the threshold level for the degradation path.
- Lifetime of the system is defined as $\mathcal{T} = \inf\{t | \mathcal{Y}(t) \geq \mathcal{C}\}.$
- The reliability function of T is $R_{\mathcal{T}}(t|\alpha,\beta) = P(\mathcal{T} \ge t) = P(\mathcal{Y}(t) < \mathcal{C}).$

Data

- Degradation of system's performance characteristic follows gamma process $\mathcal{GP}(\alpha t, \beta)$.
- *n* systems from population are randomly selected and tested.
- Assume that the measurement time epochs are t₁ < t₂ < ··· < t_m, and the corresponding degradation value of the *i*-th system at time epoch t_j is Y_{ij}, i = 1,...,n, j = 1,...,m.
- For the sake of simplifying notations, we assume that the time intervals between measurements are equal. That is, the measurement time epoch $t_j = jl$.
- Let $y_{ij} = Y_{ij} Y_{ij-1}$, where $Y_{i0} = 0$, i = 1, ..., n, j = 1, ..., m.
- Then we have $y_{ij} \sim Ga(\alpha l, \beta)$.

• Denote the observed data as $\boldsymbol{y} = \{y_{ij}, i = 1, \dots, n, j = 1, \dots, m\}.$

Likelihood

Based on the data \boldsymbol{y} , the likelihood function is

$$L(\boldsymbol{y}|\alpha,\beta) = \prod_{i=1}^{n} \prod_{j=1}^{m} \frac{\beta^{\alpha l}}{\Gamma(\alpha l)} y_{ij}^{\alpha l-1} \exp\{-\beta y_{ij}\}$$

$$\propto \frac{\beta^{mnl\alpha}}{[\Gamma(\alpha l)]^{mn}} \bar{y}_{g}^{mnl\alpha} \exp\{-mn\bar{y}_{a}\beta\},$$

$$(1)$$

where
$$\bar{y}_g = \left[\prod_{i=1}^n \prod_{j=1}^m y_{ij}\right]^{1/(mn)}$$
 and $\bar{y}_a = \frac{1}{mn} \sum_{i=1}^n \sum_{j=1}^m y_{ij}$.

Conjugate prior

Theorem 1

Given the likelihood function (1), the conjugate prior for α and β is

$$\pi(\alpha,\beta) = C \frac{(\beta\omega)^{\delta l\alpha}}{[\Gamma(l\alpha)]^{\delta}} \exp\{-\delta\lambda\beta\},\tag{2}$$

where C is a normalized constant, δ , ω and λ are hyperparameters with nonnegative values, which describe kurtosis, shape and scale of the distribution, respectively.

Visualization of conjugate prior ($\delta = 2, \omega = 0.5, \lambda = 1.5$)

Visualization of conjugate prior ($\delta = 2, \omega = 1, \lambda = 1.5$)

Visualization of conjugate prior ($\delta = 2, \omega = 0.5, \lambda = 3$)

Visualization of conjugate prior ($\delta = 5, \omega = 0.5, \lambda = 1.5$)

Determination of hyperparameters

Choosing the values of hyperparemeters according to amount of prior information

- Informative priors: large δ , small ω , or large λ .
- Diffuse priors: small δ , large ω , or small λ .

The joint prior distribution (2) can be written as

$$\pi(\alpha,\beta) = \pi(\beta|\alpha)\pi(\alpha)$$

$$\propto \frac{(\delta\lambda)^{\delta l\alpha+1}\beta^{\delta l\alpha}}{\Gamma(1+\delta l\alpha)} \exp\{-\delta\lambda\beta\} \cdot \frac{\Gamma(1+\delta l\alpha)}{\left[\Gamma(l\alpha)\right]^{\delta}} \exp\left\{-\alpha\delta l\log\left(\frac{\delta\lambda}{\omega}\right)\right\}.$$

- $\beta | \alpha \sim Ga(1 + \delta l\alpha, \delta \lambda).$
- $\bullet\,$ The marginal density of α is proportional to

$$h(\alpha) = \frac{\Gamma(1 + \delta l \alpha)}{\left[\Gamma(l\alpha)\right]^{\delta}} \exp\left\{-\alpha \delta l \log\left(\frac{\delta \lambda}{\omega}\right)\right\}.$$
 (3)

• Using Stirling's formula and $\alpha \to \infty$,

$$\frac{\Gamma(1+\delta l\alpha)}{\left[\Gamma(l\alpha)\right]^{\delta}} \equiv O\left(\alpha^{(\delta+1)/2} \exp\{\alpha \delta l \log(\delta)\}\right).$$

- When $\alpha \to \infty$, $h(\alpha) \equiv O\left(\alpha^{(\delta+1)/2} \exp\left\{-\alpha \delta l \log\left(\frac{\lambda}{\omega}\right)\right\}\right)$.
- Thus, to make the conjugate prior $\pi(\alpha,\beta)$ proper, the condition $\omega<\lambda$ should be satisfied.
- Then the tail of $\pi(\alpha)$ can be approximated by $Ga\left(\frac{\delta+3}{2}, \delta l \log\left(\frac{\lambda}{\omega}\right)\right)$.
- We call $\pi(\alpha, \beta)$ approximated-gamma-gamma distribution, denoted as $AGG(\delta, \omega, \lambda)$.

Marginal prior of α

徐安察 (ZJSU)

Generate random numbers from $AGG(\delta, \omega, \lambda)$

Algorithm 1: Gibbs sampling (GS)

 $\ \, \bigcirc \ \, \beta | \alpha \sim Ga(1+\delta l\alpha,\delta\lambda).$

(2) Given β , the conditional density of α is proportional to $\frac{(\beta \omega)^{\delta l \alpha}}{[\Gamma(l\alpha)]^{\delta}}$, which is log-concave.

Generation of random numbers from $AGG(\delta, \omega, \lambda)$

Algorithm 2: Discrete grid sampling (DGS)

Discrete grid sampling is utilized for generating random numbers from $\pi(\alpha)$ approximately.

- **()** Choose an interval (A_1, A_2) , in which the probability that α lies in is nearly 1.
- Select M grids equally lies in the interval (A_1, A_2) , and compute the unnormalized marginal distribution of α (3) on the grids.
- Having computed the relative posterior density at a grid, we normalize by approximating π(α) as discrete distribution over the grids and setting the total probability in the grids to 1.
- **(**) Generate random numbers of α from the normalized discrete distribution.
- Solution Given α , generate β from $Ga(1 + \delta l\alpha, \delta \lambda)$.

Generate random numbers from $AGG(\delta, \omega, \lambda)$

Algorithm 3: Sampling importance resampling (SIR)

() Choose Ga(a, b) as the instrumental distribution.

- 2 The values of a and b can be determined as follows.
 - Let $\tilde{\alpha} = \underset{\alpha}{\arg \max \log h(\alpha)} \text{ and } I(\tilde{\alpha}) = \frac{\partial^2 \log h(\alpha)}{\partial \alpha^2} \Big|_{\alpha = \tilde{\alpha}}.$

• Initialize
$$b$$
 as $b_0 = \delta l \log \left(\frac{\lambda}{\omega}\right)$ and a as $a_0 = \tilde{\alpha} b_0$.

• Compute the precision ratio $R = \frac{b_0^2/a_0}{I(\tilde{\alpha})}$, and update $a = a_0/R$ and $b = b_0/R$.

- 3 Then generate M random numbers from Ga(a, b), and the weight of each number can be computed by function $h(\alpha)/f_{Ga}(\alpha|a, b)$, where $f_{Ga}(\alpha|a, b)$ denotes PDF of Ga(a, b).
- **(**) Resampling α with replacement from the weighted M random numbers.
- **(a)** Given α , generate β from $Ga(1 + \delta l\alpha, \delta \lambda)$.

Posterior distribution

Theorem 2

Given the likelihood function (1) and prior $\pi(\alpha, \beta)$ (2), the joint posterior distribution of α and β is

$$AGG\left(mn+\delta, \ \bar{y}_{g}^{\frac{mn}{mn+\delta}}\omega^{\frac{\delta}{mn+\delta}}, \ \frac{mn\bar{y}_{m}+\delta\lambda}{mn+\delta}\right)$$

• Special values of hyperparameters ω and λ : $\omega = \bar{y}_g$, $\lambda = \bar{y}_m$. Then the joint posterior is $AGG(mn + \delta, \bar{y}_g, \bar{y}_m)$.

• In this setting, the hyperparameter δ behaves like number of measurements. The value of δ can be determined according to measurement-equivalent of the amount of information.

Laser degradation data (Meeker & Escobar, 1998)

Time

徐安察 (ZJSU)

Estimates

- Prior: $AGG(1, \bar{y}_g, \bar{y}_m)$.
- Parameters: α , β and reliability at time 4500 hours R(4500).
- Gibbs sampling: 3000 iterations with the first 1000 burn-in sample
- Discrete grid sampling: 10000 grids in the interval (0,10), and finally generate posterior sample with sample size 1000.
- SIR: 10000 random numbers from instrumental distribution, and resampling posterior sample with sample size 1000.

Table 1: The point and 95% CI estimates of α , β and R(4500).

Estimate	GS				DGS		SIR		
	α	β	R(4500)	α	β	R(4500)	α	β	R(4500)
Point	0.0309	15.342	0.879	0.0308	15.325	0.878	0.0310	15.438	0.882
2.5%	0.0258	12.693	0.740	0.0260	12.698	0.737	0.0256	12.677	0.743
97.5%	0.0366	18.332	0.963	0.0370	18.328	0.962	0.0366	18.368	0.964

Simulation settings

- $\alpha = 0.031$, $\beta = 15.35$, R(4500) = 0.88, and mean-time-to-failure (MTTF) = 4976.74.
- m = 16, n = 15, l = 250.
- Hyperparameters $\delta = 0, 1, m/4$ and m/2; $\omega = \bar{y}_g$; $\lambda = \bar{y}_m$.
- 10000 repetitions for comparing three algorithms.
- Indexes of assessing different algorithms: absolute relative error (ARB) and squared root of mean squared error (RMSE) of Bayesian point estimates, frequentist coverage probability (FCP) of 95% credible interval, computational time.

Algorithm		δ	= 0		$\delta = 1$				
	α	β	R(4500)	MTTF	α	β	R(4500)	MTTF	
GS	0.0245	0.0256	0.0161	0.00109	0.0243	0.0254	0.0161	0.00108	
DGS	0.0245	0.0256	0.0161	0.0011	0.0245	0.0256	0.0161	0.00109	
SIR	0.0245	0.0256	0.0161	0.00109	0.0245	0.0256	0.0161	0.00109	
Algorithm		δ	$=\frac{m}{4}$		$\delta = \frac{m}{2}$				
	α	β	R(4500)	MTTF	α	β	R(4500)	MTTF	
GS	0.0233	0.0247	0.0153	0.00136	0.0234	0.0248	0.0151	0.00137	
DGS	0.0234	0.0249	0.0152	0.00137	0.0233	0.0247	0.0151	0.00136	
SIR	0.0234	0.0249	0.0152	0.00138	0.0232	0.0246	0.0151	0.00136	

Table 2: ARBs of point estimates of the parameters.

Algorithm		δ	= 0		$\delta = 1$			
	α	β	R(4500)	MTTF	α	β	R(4500)	MTTF
GS	0.00292	1.491	0.0573	113.28	0.00291	1.489	0.0574	113.25
DGS	0.00290	1.484	0.0574	113.22	0.00289	1.482	0.0573	113.19
SIR	0.00289	1.483	0.0573	113.21	0.00289	1.482	0.0574	113.20
Alaavithaa		δ :	$=\frac{m}{4}$		$\delta = \frac{m}{2}$			
Algorithm	α	β	R(4500)	MTTF	α	β	R(4500)	MTTF
GS	0.00289	1.484	0.0569	113.68	0.00290	1.486	0.0568	113.70
DGS	0.00286	1.479	0.0569	113.63	0.00287	1.475	0.0567	113.59
SIR	0.00284	1.479	0.0568	113.60	0.00286	1.476	0.0567	113.55

Table 3: RMSEs of point estimates of the parameters.

Algorithm		Ċ	$\delta = 0$		$\delta = 1$				
	α	β	R(4500)	MTTF	α	β	R(4500)	MTTF	
GS	0.0109	5.588	0.224	447.444	0.0109	5.585	0.224	446.609	
DGS	0.0109	5.629	0.224	446.274	0.0109	5.620	0.223	445.596	
SIR	0.0110	5.630	0.224	446.414	0.0109	5.624	0.223	445.318	
A		δ	$=\frac{m}{4}$		$\delta = \frac{m}{2}$				
Algorithm	α	β	R(4500)	MTTF	α	β	R(4500)	MTTF	
GS	0.0108	5.541	0.222	444.082	0.0107	5.502	0.220	440.493	
DGS	0.0108	5.582	0.221	443.013	0.0107	5.535	0.219	439.562	
SIR	0.0109	5.581	0.221	443.131	0.0108	5.536	0.219	439.373	

Table 4: Lengths of 95% credible intervals of the parameters.

A.L		δ	= 0		$\delta = 1$			
Algorithm	α	β	R(4500)	MTTF	α	β	R(4500)	MTTF
GS	0.938	0.937	0.9434	0.9447	0.938	0.9359	0.9444	0.9464
DGS	0.9364	0.9417	0.9441	0.9463	0.936	0.9401	0.9438	0.9451
SIR	0.9454	0.9412	0.9441	0.9442	0.9446	0.9429	0.9436	0.9438
A		δ :	$=\frac{m}{4}$		$\delta = \frac{m}{2}$			
Algorithm	α	β	R(4500)	MTTF	α	β	R(4500)	MTTF
GS	0.9384	0.9366	0.9456	0.9476	0.9328	0.9342	0.9431	0.9444
DGS	0.9318	0.944	0.9449	0.9463	0.9276	0.9398	0.9419	0.9439
SIR	0.9433	0.9433	0.9433	0.9466	0.9404	0.9413	0.9428	0.9428

Table 5: Frequentist coverage probabilities of 95% credible intervals of the parameters.

 The computational time of the three algorithms for each sample are 0.602, 0.00341 and 0.00499 seconds in a desktop with Intel(R) Core(TM) i7-10700 CPU at 2.9 GHz and 16 GB RAM running under a Windows 11 operating system.

徐安察 (ZJSU)

Case study

Data

- Assume that heterogeneity exists among systems. The degradation of the *i*-th system's performance characteristic follows gamma process *GP*(αt, β_i).
- Let Y_{ij} be the degradation value of the *i*-th system at time epoch $t_j = jl$, i = 1, ..., n, j = 1, ..., m.
- Let $y_{ij} = Y_{ij} Y_{ij-1}$, where $Y_{i0} = 0$, i = 1, ..., n, j = 1, ..., m.
- Then we have $y_{ij} \sim Ga(\alpha l, \beta_i)$.
- Denote the observed data as $y_{(m)} = \{y_{ij}, i = 1, \dots, n, j = 1, \dots, m\}.$

Likelihood

Based on the data $y_{(m)}$, the likelihood function is

$$L(\boldsymbol{y_{(m)}}|\alpha,\beta_1,\ldots,\beta_n) = \prod_{i=1}^n \prod_{j=1}^m \frac{\beta_i^{\alpha l}}{\Gamma(\alpha l)} y_{ij}^{\alpha l-1} \exp\{-\beta_i y_{ij}\}$$

$$\propto \frac{\bar{\beta}_g^{mnl\alpha}}{[\Gamma(\alpha l)]^{mn}} \bar{y}_g^{mnl\alpha} \exp\left\{-\sum_{i=1}^n m \bar{y}_i \beta\right\},$$
(4)

where
$$\bar{\beta}_g = \left[\prod_{i=1}^n \beta_i\right]^{1/n}$$
 and $\bar{y}_i = \frac{1}{m} \sum_{j=1}^m y_{ij}$, $i = 1, ..., n$.

Conjugate prior

Theorem 3

Given the likelihood function (4), the conjugate prior for $(\alpha, \beta_1, \ldots, \beta_n)'$ is

$$\pi(\alpha,\beta_1,\ldots,\beta_n) = C \frac{\left(\bar{\beta}_g \omega\right)^{\delta_1 l \alpha}}{\left[\Gamma(l\alpha)\right]^{\delta_1}} \exp\left\{-\sum_{i=1}^n \delta_2 \lambda_i \beta_i\right\},\tag{5}$$

where C is a normalized constant, δ_1 , δ_2 , ω and λ_i s are hyperparameters with nonnegative values.

Heterogeneity

Decomposition

$$\pi(\alpha, \beta_1, \dots, \beta_n) = \prod_{i=1}^n \pi(\beta_i | \alpha) \pi(\alpha)$$

$$\propto \prod_{i=1}^n \frac{(\delta_2 \lambda_i)^{1+\delta_1 l \alpha/n} \beta_i^{\delta_1 l \alpha/n}}{\Gamma(1+\delta_1 l \alpha/n)} \exp\{-\delta_2 \lambda_i \beta_i\}$$

$$\times \frac{[\Gamma(1+\delta_1 l \alpha/n)]^n}{[\Gamma(l\alpha)]^{\delta_1}} \exp\left\{-\alpha \delta_1 l \left[\log\left(\frac{\delta_2}{\omega}\right) + \frac{1}{n} \sum_{i=1}^n \log \lambda_i\right]\right\}.$$

•
$$\beta_i | \alpha \sim Ga(1 + \delta_1 l \alpha / n, \delta_2 \lambda_i).$$

 ${\ensuremath{\, \circ }}$ The marginal density of α is proportional to

$$g(\alpha) = \frac{\left[\Gamma(1+\delta_1 l\alpha/n)\right]^n}{\left[\Gamma(l\alpha)\right]^{\delta_1}} \exp\left\{-\alpha\delta_1 l\left[\log\left(\frac{\delta_2}{\omega}\right) + \frac{1}{n}\sum_{i=1}^n \log\lambda_i\right]\right\}.$$
 (6)

Heterogeneity

• Using Stirling's formula and $\alpha \to \infty$,

$$g(\alpha) \equiv O\left(\alpha^{\frac{\delta_1+n}{2}} \exp\left\{-K\alpha\right\}\right),$$

where
$$K = \delta_1 l \left[\log \left(\frac{n \delta_2}{\delta_1} \right) + \frac{1}{n} \sum_{i=1}^n \log \left(\frac{\lambda_i}{\omega} \right) \right].$$

- Thus, to make the conjugate prior π(α, β₁,..., β_n) proper, the condition K > 0 should be satisfied.
- Then the tail of $\pi(\alpha)$ can be approximated by $Ga\left(\frac{\delta_1+n+2}{2},K\right)$.
- We call $\pi(\alpha, \beta)$ approximated-gamma-multivariate-gamma distribution, denoted as $AGMG_n(\gamma, \omega, \xi)$, where $\gamma = (\delta_1, \delta_2)'$, and $\xi = (\lambda_1, \dots, \lambda_n)'$.

Sampling from $AGMG_n\left(oldsymbol{\gamma}, \ \omega, \ oldsymbol{\lambda} ight)$

Algorithm 4: SIR

- **1** Choose Ga(a, b) as the instrumental distribution.
- 2 The values of a and b can be determined as follows.
 - Let $\tilde{\alpha} = \underset{\alpha}{\operatorname{arg\,max}} \log g(\alpha)$ and $I(\tilde{\alpha}) = \frac{\partial^2 \log g(\alpha)}{\partial \alpha^2} \Big|_{\alpha = \tilde{\alpha}}$.
 - Initialize b as $b_0 = K$ and a as $a_0 = \tilde{\alpha} b_0$.
 - Compute the precision ratio $R = \frac{b_0^2/a_0}{I(\tilde{\alpha})}$, and update $a = a_0/R$ and $b = b_0/R$.
- 3 Then generate M random numbers from Ga(a, b), and the weight of each number can be computed by function $g(\alpha)/f_{Ga}(\alpha|a, b)$.
- **(**) Resampling α with replacement from the weighted M random numbers.
- **(**) Given α , generate β_i from $Ga(1 + \delta_1 l\alpha/n, \delta_2 \lambda_i)$.

Posterior distribution

Theorem 4

Given the likelihood function (4) and prior (5), the joint posterior distribution of $(\alpha, \beta_1, \ldots, \beta_n)'$ is

 $AGMG_n\left(\boldsymbol{\gamma}_{(m)}, \ \omega_{(m)}, \ \boldsymbol{\lambda}_{(m)}\right),$

where
$$\gamma_{(m)} = (mn + \delta_1, m + \delta_2)'$$
, $\omega_{(m)} = \bar{y}_{g(m)}^{\frac{mn}{mn+\delta_1}} \omega^{\frac{\delta_1}{mn+\delta_1}}$,
 $\bar{y}_{g(m)} = \left[\prod_{i=1}^n \prod_{j=1}^m y_{ij}\right]^{\frac{1}{mn}}$, $\lambda_{(m)} = \left(\frac{m\bar{y}_1 + \delta_2\lambda_1}{m+\delta_2}, \dots, \frac{m\bar{y}_n + \delta_2\lambda_n}{m+\delta_2}\right)'$.

• Special values of hyperparameters ω and λ_i : $\omega = \bar{y}_{g(m)}, \ \lambda_i = \bar{y}_{i(m)}$ Then the joint posterior is $AGMG_n\left(\gamma_{(m)}, \ \bar{y}_{g(m)}, \ (\bar{y}_{1(m)}, \dots, \bar{y}_{n(m)})'\right)$.

• The hyperparameters δ_1 and δ_2 behave like number of measurements.

徐安察 (ZJSU)

3 Simulation

Case study

• Assume that all the degradation values of the *i*-th system until time t_m are less than C. The remaining useful life (RUL) of the *i*-th system at time t_m is defined as

 $Z_{it_m} = \inf\{z: \mathcal{Y}_i(z+t_m) \ge \mathcal{C} | \mathcal{Y}_i(t_m) < \mathcal{C}\}.$

• The reliability function of Z_{it_m} is

$$R_{Z_{it_m}}(z|\alpha,\beta_i) = P(Z_{it_m} \ge z) = P(\mathcal{Y}_i(z+t_m) < \mathcal{C}).$$

Approximation

- The PDF of Z_{it_m} : $f_{Z_{it_m}}(z|\alpha,\beta_i) = -\frac{\partial R_{Z_{it_m}}(z|\alpha,\beta_i)}{\partial z}$, which is too complicated.
- Park and Padgett (2005) recommended a two-parameter Birnbaum–Saunders distribution $BS(\alpha^*, \beta_i^*)$ with CDF $\Phi\left(\frac{1}{\alpha_i^*}\left[\sqrt{\frac{z}{\beta_i^*}} \sqrt{\frac{\beta_i^*}{z}}\right]\right)$ to approximate the distribution of Z_{it_m} , where $\alpha_i^* = \sqrt{\frac{1}{\beta_i(\mathcal{C}-Y_{im})}}$ and $\beta_i^* = \frac{\beta_i(\mathcal{C}-Y_{im})}{\alpha}$, $\Phi(\cdot)$ is the CDF of standard normal distribution.
- Then mean of Z_{it_m} can be approximated by

$$\mu_{im}(\alpha,\beta_i) = \beta_i^* \left(1 + \left(\alpha_i^*\right)^2 / 2 \right) = \frac{1 + 2\beta_i (\mathcal{C} - Y_{im})}{2\alpha}.$$

• The lower ρ -th quantile of the distribution of Z_{it_m} can be approximated by

$$\mu_{im}^{\rho}(\alpha,\beta_i) = \frac{\beta_i^*}{4} \left[u_{\rho} \alpha^* + \sqrt{\left(u_{\rho} \alpha^*\right)^2 + 4} \right]^2,$$

where u_{ρ} is the ρ -th quantile of the standard normal distribution.

RUL prediction

• Bayesian point prediction of RUL of the *i*-th system at time t_m :

$$\tilde{\mu}_{im} = \int_0^\infty \int_0^\infty \mu_{im}(\alpha, \beta_i) \pi(\alpha, \beta_i | \boldsymbol{y_{(m)}}) d\alpha d\beta_i.$$
(7)

• Bayesian interval prediction of RUL of the *i*-th system at time t_m with $1 - \rho$ credible level:

$$\left(\tilde{\mu}_{im}^{\rho/2}, \tilde{\mu}_{im}^{1-\rho/2}\right),\tag{8}$$

where $\tilde{\mu}_{im}^{\rho} = \int_{0}^{\infty} \int_{0}^{\infty} \mu_{im}^{\rho}(\alpha, \beta_i) \pi(\alpha, \beta_i | \boldsymbol{y_{(m)}}) \mathrm{d}\alpha \mathrm{d}\beta_i.$

Procedure of online RUL prediction

- **①** Collect new observations $(y_{1m+1}, \ldots, y_{nm+1})$ at time $t_{m+1} = (m+1)l$
- 2 Update the hyperparameters in the posterior distribution of $(lpha, eta_1, \dots, eta_n)'$ iteratively:

$$\boldsymbol{\gamma}_{(m+1)} = \boldsymbol{\gamma}_{(m)} + (n,1)', \\ \omega_{(m+1)} = \omega_{(m)}^{\frac{mn+\delta_1}{(m+1)n+\delta_1}} \left[\prod_{i=1}^m y_{im+1}\right]^{\frac{(m+1)n+\delta_1}{(m+1)n+\delta_1}}$$

$$\boldsymbol{\lambda}_{(m+1)} = \frac{m+\delta_2}{m+1+\delta_2} \boldsymbol{\lambda}_{(m)} + \frac{1}{m+1+\delta_2} (y_{1m+1}, \dots, y_{nm+1})'.$$

- **3** Generate posterior sample of $(\alpha, \beta_1, \dots, \beta_n)'$ by algorithm 4.

- Using linear interpolation method, we can obtain the true failure time for the first, sixth and tenth devices, which are 3785.75, 3506.75 and 3351.25 hours, respectively.
- Prediction of RUL of the three devices starts from the second measurement (500 hours).

徐安察 (ZJSU)

The 6th Device

The 10th Device

Conclusion

- Conjugate prior for the homogeneous gamma process is derived, and the properties of the prior are investigated.
- Three advanced algorithms (Gibbs sampling, DGS, and SIR) are proposed to simulate random numbers from the posterior distribution.
- The conjugate prior framework is extended to encompass the gamma process with heterogeneous effects.
- An innovative online algorithm is developed for simultaneous RUL prediction across multiple systems.

Thanks!