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Degradation Models

@ General path model.

@ Stochastic process: Wiener, gamma, inverse Gaussian (IG), variance gamma,
Ornstein—Uhlenbeck, etc.

@ Review papers: Si et al. (2011), Ye and Xie (2015), Zhang et al. (2018).
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Introduction

Literature review

@ For Wiener-based degradation models, the Kalman filter or its extended methods are
often utilized to conduct online RUL predictions (Wang et al, 2011; Si et al., 2013;
Wang and Tsui, 2018; Zhang et al., 2018).

@ For gamma process, Paroissin (2017) and Xu and Shen (2018) developed recursive
linear estimators for the mean and variance of the gamma process.
@ Using the same techniques for RUL prediction and interval estimation remains

challenging.

@ As new observations emerge, conducting statistical analysis mandates a
reiteration for the updated dataset, posing challenges with growing sample sizes
in terms of data storage and computational efficiency.
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Conjugate Prior and Posterior Sampling

Gamma process

Gamma process {Y(t),t > 0} satisfies the following properties:
i) Y(0) = 0 with probability 1;

i) {Y(t),t > 0} has independent increments;

iit) The increment AY; = Y(t) — Y(s) follows gamma distribution ( Ga(a(t — s), 7)) with
probability density function (PDF)

Ba(t—s)ya(t—s)—l

eXp{_By} 7t > s,

where I'(-) denotes the gamma function.

We denote the gamma process {)(t),t > 0} as GP(at, 7).
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Conjugate Prior and Posterior Sampling

Lifetime

@ Let C denote the threshold level for the degradation path.
@ Lifetime of the system is defined as 7 = inf{¢|)(t) > C}.

@ The reliability function of T is Ry (t|a, B) = P(T >t) = P(Y(t) < C).
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Conjugate Prior and Posterior Sampling

@ Degradation of system’s performance characteristic follows gamma process GP(at, 3).
@ n systems from population are randomly selected and tested.

@ Assume that the measurement time epochs are t; < ty < --- < t,,, and the
corresponding degradation value of the i-th system at time epoch ¢; is Y},

1=1,...,n,5=1,...,m.

@ For the sake of simplifying notations, we assume that the time intervals between
measurements are equal. That is, the measurement time epoch t; = jl.

@ Let Yij :)/,7 *Y;'j_l, where ;0 =0,1=1,...,n,j=1,...,m.
@ Then we have y;; ~ Ga(al, ).

@ Denote the observed data as y = {y;;,i = 1,...,n, j=1,...,m}.
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Likelihood

Based on the data y, the likelihood function is

L(y|a, 8 HH i yff 1GXP{—5%J’}
=1 5= 1 (1)

anla e

X Wyg exp{—mny.0},

:| 1/(mn)

where 7/, = [H?ﬂ HT:l Yij and §o = n D0 2721 Yij-
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Conjugate Prior and Posterior Sampling

Conjugate prior

Given the likelihood function (1), the conjugate prior for o and ( is
(ﬁw)éla
m(a, f) = C———=exp{—0)(}, 2
(o, B) ()] p{—0A5} (2)

where C' is a normalized constant, §, w and \ are hyperparameters with
nonnegative values, which describe kurtosis, shape and scale of the
distribution, respectively.
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Conjugate Prior and Posterior Sampling

Visualization of conjugate prior (6 = 2,w = 0.5, A = 1.5)
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Conjugate Prior and Posterior Sampling

Visualization of conjugate prior (6 = 2,w

=1,\ = 1.5)
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Conjugate Prior and Posterior Sampling

Visualization of conjugate prior (6 = 2,w = 0.5, A = 3)
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Conjugate Prior and Posterior Sampling

Visualization of conjugate prior (6 = 5,w = 0.5, A = 1.5)
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Conjugate Prior and Posterior Sampling

Determination of hyperparameters

Choosing the values of hyperparemeters according to amount of prior
information

@ Informative priors: large &, small w, or large A.

@ Diffuse priors: small §, large w, or small A.
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Conjugate Prior and Posterior Sampling

The joint prior distribution (2) can be written as

m(a, B) = m(Bla)m(a)
dla+1 éla a
x M exp{—d\G} - M exp {—a5l log (%) } :

['(1+ dla) [T(l)]?
@ SBla~ Ga(l + dla, 0N).
@ The marginal density of « is proportional to
(1 +0la) B oA
") = )y exp{ aotlos ( w >} ' G)
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Conjugate Prior and Posterior Sampling

@ Using Stirling's formula and av — oo,

(1 +6la) _ 0 0+D/2 g fasl o
ey = ( p{adllog(0)})
® When a — oo, h(a) = O (T Zexp {—adllog (2)}).

@ Thus, to make the conjugate prior 7(c, 3) proper, the condition w < A should be

satisfied.
@ Then the tail of 7(«) can be approximated by Ga (5%3,(51 log (3))

@ We call w(a, B) approximated-gamma-gamma distribution, denoted as AGG(J, w, A).
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Conjugate Prior and Posterior Sampling

Marginal prior of «
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Conjugate Prior and Posterior Sampling

Generate random numbers from AGG (9, w, \)

Algorithm 1: Gibbs sampling (GS)

Q Bla~ Ga(l + dla, o).
dla
@ Given f3, the conditional density of « is proportional to w—é, which is log-concave.

[C(la)]
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Conjugate Prior and Posterior Sampling

Generation of random numbers from AGG(6, w, \)

Algorithm 2: Discrete grid sampling (DGS)

Discrete grid sampling is utilized for generating random numbers from 7(«)
approximately.

@ Choose an interval (A1, A3), in which the probability that « lies in is nearly 1.

©Q Select M grids equally lies in the interval (A;, As), and compute the unnormalized
marginal distribution of a (3) on the grids.

© Having computed the relative posterior density at a grid, we normalize by
approximating 7(«a) as discrete distribution over the grids and setting the total
probability in the grids to 1.

@ Generate random numbers of o from the normalized discrete distribution.

@ Given «, generate § from Ga(1 + dla, 5 )N).
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Generate random numbers from AGG (9, w, \)

Algorithm 3: Sampling importance resampling (SIR)
@ Choose Ga(a,b) as the instrumental distribution.
© The values of a and b can be determined as follows.
02 log h(a)
oo
o Initialize b as by = 6llog (2) and a as ap = dbo.
o Compute the precision ratio R = M and update a = ag/R and b = by/R.

o Let @ = argmaxlogh(a) and I (&) =

a=x

@ Then generate M random numbers from Ga(a,b), and the weight of each number can
be computed by function h(«)/ faq(a]a,b), where fgq(c|a,b) denotes PDF of
Ga(a,b).

@ Resampling a with replacement from the weighted M random numbers.

@ Given a, generate § from Ga(1l + dla, 6N).
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Conjugate Prior and Posterior Sampling

Posterior distribution

Theorem 2

Given the likelihood function (1) and prior (v, 3) (2), the joint posterior
distribution of « and 3 is

AGG | mn + 6, g;zrfliéwme, w )
mn + 9

@ Special values of hyperparameters w and A: w = ¥,, A = ¥,,,. Then the joint posterior
is AGG (mn+ 0, Yg, Um) -
@ In this setting, the hyperparameter § behaves like number of measurements. The value

of § can be determined according to measurement-equivalent of the amount of
information.

RUL prediction for gamma process



Simulation

H K

e Simulation

RUL prediction for gamma process



Laser degradation data (Meeker & Escobar , 1998)
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Simulation

Estimates

@ Prior: AGG (1, Ug, Um) -
@ Parameters: «, 3 and reliability at time 4500 hours R(4500).
@ Gibbs sampling: 3000 iterations with the first 1000 burn-in sample

@ Discrete grid sampling: 10000 grids in the interval (0,10), and finally generate
posterior sample with sample size 1000.

@ SIR: 10000 random numbers from instrumental distribution, and resampling posterior

sample with sample size 1000.
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Simulation

Table 1: The point and 95% CI estimates of «, 8 and R(4500).

GS DGS SIR
a B R(4500) a B R(4500) a B R(4500)

Point ~ 0.0309 15342 0.879 0.0308 15325 0.878 0.0310 15438 0.882
25%  0.0258 12.693 0.740 0.0260 12.698 0.737  0.0256 12.677 0.743
97.5% 0.0366 18.332 0.963 0.0370 18.328 0.962 0.0366 18.368  0.964

Estimate
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Simulation

Simulation settings

@ o =0.031, g =15.35, R(4500) = 0.88, and mean-time-to-failure (MTTF) =4976.74.
@ m =16, n =15, [ = 250.

@ Hyperparameters § =0, 1, m/4 and m/2; w = Gg; A = Y.

@ 10000 repetitions for comparing three algorithms.

@ Indexes of assessing different algorithms: absolute relative error (ARB) and squared
root of mean squared error (RMSE) of Bayesian point estimates, frequentist coverage
probability (FCP) of 95% credible interval, computational time.
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Simulation

Table 2: ARBs of point estimates of the parameters.
0=0 0=1
a Ié] R(4500) MTTF « 8 R(4500) MTTF

GS  0.0245 0.0256 0.0161 0.00109 0.0243 0.0254 0.0161 0.00108

DGS  0.0245 0.0256 0.0161 0.0011 0.0245 0.0256 0.0161 0.00109

SIR  0.0245 0.0256 0.0161 0.00109 0.0245 0.0256 0.0161 0.00109
f=m ==

a B R(4500) MTTF o B R(4500) MTTF

GS  0.0233 0.0247 0.0153 0.00136 0.0234 0.0248 0.0151 0.00137

DGS 0.0234 0.0249 0.0152 0.00137 0.0233 0.0247 0.0151 0.00136
SIR 0.0234 0.0249 0.0152 0.00138 0.0232 0.0246 0.0151 0.00136

Algorithm

Algorithm

¢ (ZJSU) RUL prediction for gamma process



Simulation

Table 3: RMSEs of point estimates of the parameters.
=0 =1
! B R(4500) MTTF ! 8 R(4500) MTTF

GS  0.00202 1.491 0.0573 11328 0.00291 1.489 0.0574 113.25

DGS  0.00290 1.484 00574 113.22 0.00289 1482 0.0573 113.19

SIR  0.00289 1.483 0.0573 11321 0.00289 1.482 0.0574 113.20
§=m ="

a B R(4500) MTTF o B R(4500) MTTF

GS  0.00289 1.484 0.0569 113.68 0.00290 1.486 0.0568 113.70

DGS 0.00286 1.479 0.0569 113.63 0.00287 1.475 0.0567 113.59
SIR 0.00284 1.479 0.0568 113.60 0.00286 1.476 0.0567 113.55

Algorithm

Algorithm
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Simulation

Table 4: Lengths of 95% credible intervals of the parameters.
0=0 0=1
e 8 R(4500) MTTF « 8 R(4500) MTTF

GS 0.0109 5.588 0.224  447.444 0.0109 5.585 0.224  446.609
DGS 0.0109 5.629 0.224  446.274 0.0109 5.620 0.223  445.596
SIR 0.0110 5.630 0.224  446.414 0.0109 5.624 0.223 445318

a B R(4500) MTTF o B R(4500) MTTF

GS 0.0108 5541  0.222 444082 0.0107 5502 0.220  440.493
DGS 0.0108 5.582  0.221  443.013 0.0107 5.535 0.219  439.562
SIR 0.0109 5.581 0.221  443.131 0.0108 5.536 0.219  439.373

Algorithm

Algorithm
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Simulation

Table 5: Frequentist coverage probabilities of 95% credible intervals of the parameters.
0=0 0=1
@ Ié] R(4500) MTTF @ B R(4500) MTTF

GS 0938 0937 09434 09447 0.938 0.9359 0.9444 0.9464
DGS 0.9364 09417 0.9441 09463 0.936 0.9401 0.9438 0.9451
SIR 0.9454 09412 0.9441 0.9442 0.9446 0.9429 0.9436 0.9438

o B R(4500) MTTF « B R(4500) MTTF
GS 0.9384 0.9366 0.9456 0.9476 0.9328 0.9342 0.9431 0.9444

DGS 0.9318 0.944 0.9449 0.9463 0.9276 0.9398 0.9419 0.9439
SIR 0.9433 0.9433 0.9433 0.9466 0.9404 0.9413 0.9428 0.9428

Algorithm

Algorithm

@ The computational time of the three algorithms for each sample are 0.602, 0.00341
and 0.00499 seconds in a desktop with Intel(R) Core(TM) i7-10700 CPU at 2.9 GHz
and 16 GB RAM running under a Windows 11 operating system.
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Heterogeneity

Data

@ Assume that heterogeneity exists among systems. The degradation of the i-th system'’s
performance characteristic follows gamma process GP(at, ;).

@ Let Y;; be the degradation value of the i-th system at time epoch t; = jI,
i=1,...,n,5=1,...,m.

@ Let Yij :Y;'j _}/ij—ly where Yio=0,i= 1,...,n,7=1,...,m.
@ Then we have y;; ~ Galal, 3;).

@ Denote the observed data as Y(m) = {¥ij,i = 1,...,n, j=1,...,m}.
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Likelihood

Based on the data Y(m) the likelihood function is

/Bal N
L(Ymylr, B, -, Bn) = HH yzj "exp{—Biyi;}
=1 j= 1

(4)

ﬂmnla

S W?fgmla exp {— Z mﬂz‘ﬁ} ;
i=1

where 3, = [T, Bi]H™ and y; = — Yoy i =1, n
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Heterogeneity

Conjugate prior

Theorem 3

|

Given the likelihood function (4), the conjugate prior for (o, 1, . .., Bn)

o 01la
W(Q,ﬁl,...,ﬁn)zc([ff](;j—)e)ip{ 252 zﬁz}a (5)

where C' is a normalized constant, 61, 62, w and \;s are hyperparameters with
nonnegative values.
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Heterogeneity

Decomposition

n

(o, Br, ., Ba) = [ [ 7 (Bile) ()
=1
A

= 1;[1 T(1+ d1la/n)
« [F(l[;(f;l)%{n)]n exp {—aéll llog ( ) Zlog)\] }

(*] ,Bl|05 ~ Ga(l + 51loz/n, 52)\,)

@ The marginal density of « is proportional to

o) = [F(1+(51la/n)]n ox o o (52 l n o )
g(a) TP p{ 61l [1g< >+n21 gA,H. (6)

exp{—d2Aif3;}
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Heterogeneity

@ Using Stirling's formula and a@ — o0,

51+n

gla) =0 (a E exp{—Ka}) ,

where K = 411 [log (%) + 15" log (%)]

@ Thus, to make the conjugate prior 7(c, (1, ..., 3,) proper, the condition K > 0
should be satisfied.

@ Then the tail of 7(«) can be approximated by Ga (Q%H,K).

@ We call w(a, B) approximated-gamma-multivariate-gamma distribution, denoted as

’

AGMG, (v, w, €), where v = (81,85) , and € = (A, ..., \n)

RUL prediction for gamma process



Sampling from AGMG,, (7, w, A)

Algorithm 4: SIR

Q Choose Ga(a,b) as the instrumental distribution.

@ The values of a and b can be determined as follows.
9?log g(a)

o Let @ = argmaxlogg(a) and I (&) = B0

a=da
o Initialize b as by = K and a as ag = abyg.

o Compute the precision ratio R = bff(%o, and update a = ag/R and b = by/R.

© Then generate M random numbers from Ga(a,b), and the weight of each number can
be computed by function g(a)/fga(|a,b).

@ Resampling « with replacement from the weighted M random numbers.

@ Given a, generate 3; from Ga(1 + d1la/n, d2)\;).
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Posterior distribution

Theorem 4

Given the likelihood function (4) and prior (5), the joint posterior distribution

of (o, By, . .. ,Bn)' is

AGMG (’7(m Wim)s )\(m>,

mn

—r [
where Yy = (min + 81, + 62), Wiy = oy @,

1 /
_ . n m - mn _ ( myi+da MPn+02An
Totmy = [Tt TTjes 05| ™ Ay = (Zablehs, . mitdoda )

@ Special values of hyperparameters w and A;: w = ¥,(,,), Ai = Yi(,n) Then the joint

posterior is AGMG,, (*y(m), Yg(m)> W1em)s - - - ,gn(m))/>
@ The hyperparameters 9; and > behave like number of measurements.
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Online RUL Prediction

@ Assume that all the degradation values of the i-th system until time ¢,,, are less than
C. The remaining useful life (RUL) of the i-th system at time ¢, is defined as

Zip, = inf{z : Vi(z + t;n) > C|Vi(tm) < C}.
@ The reliability function of Z;;  is

Rz, (2|, Bi) = P(Zu,, > 2) = P(Ji(z 4+ tm) < C).

RUL prediction for gamma process



Online RUL Prediction

Approximation

® The PDF of Zuy,: fz., (2|, i) = — it G125

@ Park and Padgett (2005) recommended a two-parameter Birnbaum—Saunders

distribution BS(a*, 5}) with CDF @ <$ { /57 =/ %} )to approximate the

distribution of Zy;,,, where af =,/ 5ty— and §f = Bil€=Yim) g(.) is the CDF of

standard normal distribution.

, which is too complicated.

@ Then mean of Z;;  can be approximated by
1+ 28i C— }/im
pan(,8) = 87 (1+ (a)? j2) = LH20ACTim),

@ The lower p-th quantile of the distribution of Z;; can be approximated by

*

2
[ (v, Bi) = % {“po‘* + (“/J(}*)Q + 4} ’

where u, is the p-th quantile of the standard normal distribution.
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Online RUL Prediction

RUL prediction

@ Bayesian point prediction of RUL of the i-th system at time t,,:
Prim = / / /L’L'HL(('Y', /3i)7r<0‘7 /3L‘y(m))dadﬁL (7)
o Jo

@ Bayesian interval prediction of RUL of the i-th system at time ¢, with 1 — p credible

~p/2 ~1—p/2
(Mfréz '/Mimp/ ) ’ (8)

where ﬂfm = j‘OOO f()oo ,U’fm (aa ,81‘)71'(0(, /81|y(m))dad/81

level:
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Online RUL Prediction

Procedure of online RUL prediction

@ Collect new observations (Y1m-+1,- -, Ynm+1) at time t,01 = (m + 1)1

©Q Update the hyperparameters in the posterior distribution of («, 1, ... ,ﬁn), iteratively:

, mn+dq m (m+1§"+51
Y(m+1) = V(m) + (’I’L, 1) y W(m4+1) = w(<2;1)n+61 lH yim+1] )
i=1
m + o 1

— A — -
m + 1+62 (m) + m+1—|—52 (y1m+17 aynm+1)

Almt1) =

© Generate posterior sample of (a, Ay, ... ,ﬂn)/ by algorithm 4.

© Evaluate (7) and (8) by posterior sample using Monte Carlo integration, and thus
obtain the Bayesian point and interval prediction of RUL at time ¢,,1.
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Case study
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Case study

@ Using linear interpolation method, we can obtain the true failure time for the first,
sixth and tenth devices, which are 3785.75, 3506.75 and 3351.25 hours, respectively.

@ Prediction of RUL of the three devices starts from the second measurement (500

hours).
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Case study
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The 1st Device
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Conclusion

@ Conjugate prior for the homogeneous gamma process is derived, and the properties of
the prior are investigated.

@ Three advanced algorithms (Gibbs sampling, DGS, and SIR) are proposed to simulate
random numbers from the posterior distribution.

@ The conjugate prior framework is extended to encompass the gamma process with

heterogeneous effects.

@ An innovative online algorithm is developed for simultaneous RUL prediction across

multiple systems.
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